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Abstract

Convolutional neural networks (CNN) are shown to be
extremely successful at motor imagery task classification
with high accuracy. However, a major pitfall of deep learn-
ing models is the necessity to train with large datasets.
In this report, we procure artificial EEG data from a lim-
ited dataset using generative models such as the gener-
ative adversarial network (GAN) and variational autoen-
coder (VAE). We show approximately 4% improvement in
task classification when using a mixed training set contain-
ing both real and artificial data generated by a GAN. We
fail to train a VAE and discuss possible reasons, as well as
future directions.

1. Introduction

Motor imagery classification (MIC) using electroen-
cephalogram (EEG) signals is an essential tool for con-
structing non-invasive brain-computer interfaces (BCI) [1,
2, 3]. With recent advances in deep learning for image clas-
sification, there has been an interest to use similar architec-
tures for MIC [4]. In particular, convolutional neural net-
works (CNN) have shown promising results for EEG-based
MIC [5].

One of the major challenges for EEG-based MIC is the
small dataset sizes that are obtained from individual sub-
jects. This is a major drawback for classification algorithms,
especially those reliant on deep learning methods. Con-
sequently, research on generating artificial EEG data is of
great interest within the community.

Generative adversarial networks (GAN) [6] have proven
themselves to be state-of-the-art tools for generating syn-
thetic images, audio and videos. For MIC, recent works
have already used GANs to improve classification accuracy
through augmenting training dataset sizes by including ar-
tificially generated data [7, 8]. Our work is in large part
inspired by these efforts.

In this report, we present MIC results for data obtained
from the BCI Competition IV, Dataset 2a [9, 10]. We first
construct a baseline classification model, which is chosen
to be the Shallow CNN from [5] with minimal changes, due
to its robustness and high accuracy over other classification
networks. We then implement various data augmentation
techniques to observe how classification is affected. These
include subsampling, obtaining random crops, obtaining se-
quential crops (similar to [5]), and applying a continuous
wavelet transform (CWT).

Subsampling and cropping are chosen due to their sim-
plicity and ability to increase dataset size. More specifi-
cally, subsampling is possible as the dataset is sampled at
250 Hz, whereas typical EEG brain activity is within the
range of 0-15 Hz. Cropping is performed as the dataset in-
cludes activity from a 4 second window after a visual cue.
Humans typically have a reaction time on the order of 250
ms, and the subject may not perform the activity through-
out the entire recorded window. CWT is performed as fea-
ture extraction method since it is known that brain activ-
ity can be divided into frequency bands. It is chosen over
other time-frequency analysis methods such as the short-
time-Fourier transform (STFT) due to its strong ability to
analyze transient signals [11].

Finally, we construct two generative models for artificial
EEG data production: a variational autoencoder (VAE) [12]
and a Wasserstein GAN (WGAN) with a gradient penalty
(GP) [13]. The VAE is considered due to its strong ability to
learn input data distributions. We expect the model to suc-
cessfully encode useful features from the raw EEG signal.
However, we also suspect it to perform worse at generating
artificial data. On the other hand, the WGAN-GP is used
to due to its excellent ability to recreate input data features.
However, if fed raw EEG signals, we fear the GAN will fail
to understand what features are important when generating
artificial data. To combat this, we feed the GAN input data
that has undergone a CWT. The WGAN-GP is chosen over
other GAN architectures due to its empirical training stabil-
ity, which includes avoiding mode-collapse and successful
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convergence. Specific details of all the network implemen-
tations are included in Appendix B.

2. Results
We used four different aforementioned data augmenta-

tion techniques to augment the size of the EEG dataset and
evaluated their performance effects on the CNN test accu-
racy. As shown in Fig. 1, sequential cropping performs the
best. Moreoever, compared to the baseline of no data aug-
mentation at all, sequential cropping is the only method that
adds a beneficial effect. To evaluate these data augmenta-
tion methods on the test set, the extrapolated samples from
each trial, whether it be subsampled or cropped, have their
scores averaged to get one prediction from each trial. From
the model utilizing sequentially cropped data, we analyzed
the accuracies for each task by creating a confusion matrix
shown in Fig. 2, which is normalized to the predicted labels.

To experiment further with the Shallow CNN, we trained
and tested per subject to see how the model performed. In
Fig. 3 the test accuracies average to 72.3% with a stan-
dard deviation of 10.5%. We note each model had different
learning rates implemented for optimal performance.

The WGAN-GP is implemented using data only from
subject 6 with 5 EEG channels corresponding to probe lo-
cations Fz, C3, Cz, C4 and Pz, which we refer to as channels
1-5 respectively. Further explanation for this limited input
data is given in Appendix B. Also included in the appendix
are examples of generated CWT EEG data for all 4 motor
imagery tasks (see Fig. 6). Although comparisons between

Figure 1. Overall test set accuracy of the Shallow CNN against
different data augmentation techniques. Sequential cropping per-
forms the best, while subsampling and random cropping deterio-
rates the accuracy from the baseline. *CWT data is evaluated on
different CNN due to being an invalid size to the Shallow CNN.
This data also uses only 5 EEG channels, as opposed to the given
22 channels.

original and generated data is hand-picked, it clearly shows
that the GAN has learned features that are prevalent within
the original input data.

We then generate 100 artificial CWT EEG signals for
each of the 4 tasks, for a total of 400 additional samples in
our training data set for subject 6. We show the results when
appending the training dataset with various ratios of the to-
tal artificial dataset in Fig. 4. 3 trials of training were taken
on each augmented dataset with 0%, 25%, 50%, and 100%
of the artificial data appended, for 30 epochs each. For ref-
erence, the natural dataset had 1180. The boxplot shows the
range, indicated by the length of the vertical line, and the
mean of the test accuracies, which is indicated by the hori-
zontal orange line. The box itself represents the cutoff of a
quartile from the mean, assuming a normal distribution.

Unfortunately, we failed to train our VAE to generate
EEG data. An example of a single artificial trial signal is
show in Fig. 5. Although the trial looks like a valid EEG
signal form, all the probe channels collapse to the same sig-
nal, suggesting mode-collapse failure.

Figure 2. Confusion matrix on predicted labels for the Shallow
CNN on cropped data across all subjects. Values are normalized
to amount of predictions made for each task.

Figure 3. Using the cropped sequential data augmentation, we
trained and tested the Shallow CNN only on one subject at a time.
We can see how the CNN extracts features that generalize nicely
to the test set in subjects 0, 1, 6, and 7.
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Figure 4. Results of the CNN trained on CWT data for one subject
with only 5 EEGs extracted. The orange line within each box rep-
resents the mean. 3 trials were ran for each of the scenarios. The
natural dataset had 1180 trials while the artificial dataset had 400
trials.

3. Discussion

When augmenting the data using subsampling, we sam-
pled every 5 time bins, causing the number of data trials to
be 5 times larger and the time length to be 5 times smaller.
Subsampling causes the training and validation data to be
highly correlated to each other, making the CNN overfit on
the training data. Once the CNN overfits, it will learn the
nuances and noise of the training data, features which cause
the CNN to perform badly on new data.

Random cropping also caused the CNN to perform worse
on the testing data. This may be because the cropping is not
guaranteed to emphasize important time bins. The data aug-
mentation method that improved performance was cropping
sequentially, as it gave an 8% increase in test accuracy af-
ter training. An empirical reason why cropping sequentially
may work is because the middle portion on the EEG signal
will be repeated in all the crops taken of the signal, given
that the length of the crop > 500 time bins.

The CWT augmentation resulted in a very poor baseline
classification accuracy. One explanation for this inferior re-
sult is due to poor architecture choice. The CNN for CWT
was built upon the approximation that the CWT data can
treated like images, which may not necessarily be true. Fur-
thermore, the CNN for CWT was made to be shallow such
that it could be compared with the baseline Shallow CNN.
We suspect the architecture could be made deeper in order
to improve accuracy. Another explanation for the inferior
result is the reduced dimensionality of the EEG data when
training the CNN for CWT. Due to computational memory
and processing time considerations, we chose to reduce the
number of EEG channels used in training from 22 channels
to 5 channels.

With regards to artificial data synthesis, the WGAN-GP
successfully identifies features present in the real data and
generates a variety of artificial data. This results in a sig-

Figure 5. Example of generated EEG signal for all 22 channels.
Each color corresponds to a different EEG channel probe. The
signal looks like a legitimate EEG signal, however, the fact that all
the channels look almost identical is a clear indication of training
failure due to mode-collapse.

nificant improvement of the CNN classification when im-
plemented on CWT data. The training accuracy is largest
when 25% of the artificial data is appended to the training
set, and worsens for larger and larger ratios. This worsen-
ing is expected as the network begins to learn more features
from the artificial data that may not be present in the real
data. The architecture itself was robust to mode-collapse
and convergence failure, which is a common pitfall for most
GAN architectures.

Finally, the VAE suffered from individual examples be-
ing mapped to the same random distribution in the latent
space. This implies that the decoder ignored the latent vari-
able input and generated an output less arbitrarily. Not iden-
tically similar, but in essence, the VAE suffered from mode-
collapse. This led to problems including, not being able to
create a data set for the CNN to train on. Due to the time
constraint, the exact cause of the problem still remains un-
clear. The leading insight is that the model is too constric-
tive for individual training examples [14].

Overall, we show that it is not only possible to synthe-
size artificial EEG data, but it is also possible to use this
data to improve MIC. For future work, an interesting ar-
chitecture we suspect may be ideal for artificial EEG data
generation is the VAE-GAN [15]. As the name suggests,
this model combines the impressive feature encoding abil-
ity of the VAE with the strong feature replication ability of
the GAN. The implications of our findings are exciting for
the broader community utilizing deep learning models for
BCIs and MIC. Nevertheless, we remain wary that the abil-
ity to generate artificial EEG data may have negative ram-
ifications in the future, such as exposing BCI users to bad
actors who could send fake tasks forcing the user to perform
unwanted actions.
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A. Performance

Model Name Data Augmentation
Method

Test Set
Accuracy

Shallow CNN None 60%
Shallow CNN Subsampling 42%
Shallow CNN Random Cropping 58%
Shallow CNN Sequential Cropping 68%

CNN for
CWT CWT with 5 EEGs 37%

Table 1. Performance of the model on different data augmentation
methods. Sequential cropping proved to outperform all other tech-
niques

Number of artificial
samples appended Test set accuracy

0 35.03%
100 40.82%
200 37.01%
400 34.83%

Table 2. Comparison of how many artificial samples appended to
natural dataset of 1180 vs. Test set accuracy

Model Name Performance Summary

DCGAN Mode-collapsed

WGAN Convergence failure (500
epochs)

WGAN-GP Successfully converges
CNN-VAE Mode-collapsed

Table 3. Details on the performance of various generative models
implemented.

B. Architectures
The Shallow CNN is from prior work [5] and is proven

to perform well on the BCI dataset. The CNN architecture,
shown in Fig. 7, had a matrix input where each row corre-
sponded to an EEG channel and each column corresponded
to a time bin. The model uses separate temporal and spatial
convolution layers to split the dimensions into two jobs. We
added another dense layer with 100 hidden units before the
last dense layer. Dropout had a rate of 0.5.

We tried to limit the CNN architecture to only two con-
volutional layers to be comparable to the Shallow CNN.
Kernel sizes were set to be (7, 7) in order to capture a large
receptive field. Furthermore, batch norm, dropout, and max
pooling were applied as if the input were a regular image.
The input data was an image-like tensor where each ‘color-
channel’ corresponded to an EEG channel, each row cor-
responded to a frequency bin between 1-20 Hz, and each
column corresponded to a time bin. Due to computational
memory and processing time, we limited the number of
EEG channels included in the input data to 5 channels. We

Figure 6. Examples of generated CWT EEG data for all 4 motor
imagery tasks. Each column corresponds to a different EEG chan-
nel. A comparison between real input data and generated data
shows that the WGAN-GP has learnt features. We note these ex-
amples were hand-picked, and that there is a wide variety of signal
data.

decided on probe locations Fz, C3, Cz, C4 and Pz for max-
imal scalp coverage.

We implemented 3 GAN architectures: a deep convo-
lutional GAN (DCGAN), a traditional WGAN and the re-
ported WGAN-GP. All 3 GANs are based on the same gen-
erator and discriminator networks, shown in Fig. 9, and uti-
lized the same input data as the CNN for CWT. The gener-
ator utilizes transposed convolutions for upsampling. The
only difference between the models was the output acti-
vation of the discriminator and implemented loss function.
The DCGAN uses a sigmoid output activation and a binary
cross-entropy loss function. Both the WGANs use a linear
output activation and calculate a Wasserstein distance loss
function. The WGAN-GP augments the Wasserstein dis-
tance by adding a gradient penalty term.

The CNN VAE architecture utilises a convolutional en-
coder and a transpose convolution based in Fig. 10. In the
convolutional layers, a temporal and spatial convolution is
performed to drastically further reduce the parameter size
and training time. In the architecture, regularizers that af-
fect the stochasticity of the model such as batchnorm were
left out. Empirically, they seemed to have no noticeable af-
fect on the model’s diagnosis for mode-collapse. However,
in models with more layers it wo uld be crucial for these
regularizers to be implemented in an abnormal and strategic
way [16]. This final model was used after iterations of dif-
ferent models including multi-layer perceptron (MLP) VAE
and a traditional CNN VAE.
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Figure 7. Shallow CNN referenced from [5]
.

Figure 8. CNN architecture used for evaluating CWT data

Figure 9. GAN architecture. All implemented GANs utilized the same generator and discriminator architectures. Only the discriminator
output activation and loss function differ between GAN models.

Figure 10. VAE encoder and decoder architecture.
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