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Abstract

This paper explores the application of a deep
learning models for the task of rap lyric gen-
eration. We first propose a generative LSTM
character-level model that contrasts with re-
cent word-level approaches. We rigorously
compare the effectiveness of a character-level
models with their word-level counterparts us-
ing BLEU, RhymeAnalyzer, and human au-
thenticity prediction metrics. Secondly, we
attempt to implement a SeqGAN for the rap
lyric generation task in order to combat pitfalls
of traditional maximum-likelihood estimation
methods. Unfortunately, our SeqGAN model
fails to converge. We provide reasons and pos-
sible solutions to improve the rap lyric genera-
tion task using adversarially trained networks.

1 Introduction

Natural Language Generation (NLG) for musical
lyrics is an interesting task that has received rela-
tively little attention within the research commu-
nity. Traditional NLG tasks, such as data-to-text
generation, prioritize conforming to strict syntac-
tic structure and one-dimensional semantics. In
stark contrast, lyric generation prioritizes creative
structure and multi-dimensional semantics. Word
spelling is modified for the sake of pronunciation.
Sentence fragments serve as complete lines. Non-
word enunciations are given meaning in the way
they change how a line is sung. Repetition is abun-
dantly used both for emphasis and verse structure.
All of these quirks and many more are the result
and medium of the songwriter’s artistic expres-
sion. As such, recognizing and replicating them
is critical to produce generated lyrics that mimic
something as nebulous as “artistic style”.

Because of all these quirks, we propose eschew-
ing existing word-level text generation models and
strategies. As these models seek to understand
clear word definitions and sentence meaning, they

would be unsuited to a dataset rife with ambiguity;
like those of lyrics. Instead, we propose approach-
ing the problem with character-level models. We
seek to show that ignoring the word-level formu-
lation will discard information that would other-
wise skew our model, and the text it generates,
away from something that the artist would actu-
ally write. Additionally, character level models
have other benefits, like relatively low vocabulary
size, which improves the speed of our training, and
thus the pace of iteration and improvement on the
model.

This work focuses on developing a generative
language model for rap lyrics. In particular, we
hope our model can mimic the style of particu-
lar rap lyricists. The rap lyric generation task has
been explored by past works (Addanki and Wu,
2013; Malmi et al., 2016; Potash et al., 2015). We
specifically build upon the work done by (Potash
et al., 2015). In their research, a character-level
LSTM model was created to generate novel rap
lyrics that follow the style of a rapper without
copying existing lyrics. Unlike previous RNN
lyric generation models, which use a strict tem-
plate to structure the lyrics, their model learns the
lyrical structure implicitly.

Our first goal is to implement two identical
LSTM networks trained using maximum likeli-
hood estimation (MLE) based on (Potash et al.,
2015). The networks differ in that one network
generates lyrics using a character-level approach,
while the other uses a word-level approach. We
then evaluate the two models and their perfor-
mance with regards to rap lyric generation task
using the BLEU, RhymeAnalyzer, and human au-
thenticity metrics.

Our second goal is to implement an adversari-
ally trained network for rap lyric generation. Tra-
ditional MLE generative methods suffer from ex-
posure bias (Bengio et al., 2015; Ranzato et al.,



Figure 1: a) LSTM Generator Network Architecture. b) CNN Discriminator Network Architecture

2016), making long text generation difficult. As
we propose moving to a character-level model,
we anticipate difficulties having the model pro-
duce longer lyrics that contain rhythm and rhyme.
A common solution to mitigate the exposure bias
problem is to utilize adversarially trained net-
works. Specifically, we utilize the SeqGAN ar-
chitecture (Yu et al., 2017) with modifications for
character-level generation. Adversarially trained
networks for creative text generation is a topic that
has been explored (Yu et al., 2017; Guo et al.,
2018; Che et al., 2017; Liu et al., 2018; Saeed
et al., 2019). However, to our knowledge, no other
work has explored the use of such networks for rap
lyric generation.

2 Method

2.1 Data Collection
We used the LyricsGenius1 python library to
scrape Genius.com for complete lyrics for songs
by our chosen artists. Because we use a character-
level configuration, we found during early testing
that characters like capital letters, numbers, and
non-punctuation symbols were interfering with the
quality of the generated text. In order to solve this,
and to make the data usable for our models, we
performed the following preprocessing steps:

• Make all alphabetical characters lower case

• Make all numbers into their word counter-
part. Eg: “64” to “sixty four”.

• Filter and ignore all non-alphanumeric, non-
punctuation characters.

• Only collect verses. Discard repetitive sec-
tions like the chorus.

1https://github.com/johnwmillr/LyricsGenius

• Add [startVerse] and [endVerse] tokens.
Newline (“\n”) is considered the [endLine]
token. (Potash et al., 2015) performed a sim-
ilar preprocessing step.

As artists have released different numbers of
songs, each with different lengths, the total num-
ber of verses we got from each of them were dif-
ferent. As we will discuss later, this and other fea-
tures caused differences in the results, like some
datasets overfitting faster.

2.2 MLE with LSTM Generator

In order to use the network with characters, a dic-
tionary must first be created to translate the vo-
cabulary to integers. A histogram was used to
sort the characters in the vocabulary by frequency,
and integers from 0 onwards were assigned to
each character. After translating the training lyrics
into a sequence of integers, the sequence was split
into subsequences. Each training subsequence was
then indexed one character forward to generate the
target data. For example, if one training subse-
quence was “the quick do”, the corresponding tar-
get sequence would be “he quick dog”.

The word-level model architecture and training
procedure is identical, except the vocabulary con-
tains words instead of characters. The hyperpa-
rameters of the model must also be tweaked to
account for the shorter training subsequences and
space taken up by the much larger vocabulary of
unique words.

The LSTM architecture is shown in Fig. 1a be-
low. The embedding layer converts each positive
integer in the input sequence to a dense vector of
a fixed size. Following the two LSTM layers is a
fully connected layer to resize the output to the vo-
cabulary size. Finally, a softmax layer calculates



the probabilities of each character class. The hid-
den and cell states are updated by the LSTM layers
and returned.

During training, the data is split into batches and
network parameters are optimized using Adam.
The criteria is the Negative Log-Likelihood of the
class probabilities. To prevent the gradients from
exploding, they are clipped after using a L2-Norm
of 5.

2.3 Adversarial training with SeqGAN

Traditional generative adversarial networks
(GAN) (Goodfellow et al., 2014) architectures
are not suitable for sequence generation tasks
such as that of NLG. This is due to the non-
differentiability of the argmax function used at
the end of each sequence step and the inability
to apply gradients to discrete tokens. Several
solutions have been proposed to tackle these
issues. For our work, we choose the SeqGAN
model.

The discriminator network’s goal is to correctly
classify “real” data from “fake” data generated.
We follow the authors of SeqGAN and implement
a CNN classifier based on (Kim, 2014). The ar-
chitecture is shown in Fig. 1b. This architec-
ture implements several 1-D convolution filters of
various window sizes optimized for the maximum
sequence length. Moreover, a max-pooling over-
time operation is performed for each convolution
output, and the pooled features are fed into a final
fully-connected softmax layer to get the probabil-
ity the sequence is “real” or “fake”. A highway
architecture before the final fully-connected layer
is also implemented.

In order to train the generator in an adversar-
ial fashion, SeqGAN considers the generator to be
an RL agent that takes an action (i.e. outputting a
character) based on a policy and its current state
(i.e. the previous characters outputted) with the
hopes of maximizing a reward signal (i.e. fool-
ing the discriminator) at the end of the sequence.
The generator policy is optimized using a policy
gradient method. Specifically, the REINFORCE
algorithm is utilized (Williams, 1992).

To estimate the action-value function, a Monte-
Carlo rollout search is performed at each time step
t to sample the unknown future T − t tokens. The
final action-value reward is equal to the probabil-
ity output of the discriminator predicting the se-
quence as being “real”.

2.4 Evaluation Metrics

To get varied perspectives when analyzing the re-
sults, we evaluate the performance of our models
in three ways: (1) applying the BLEU metric, (2)
using the RhymeAnalyzer software, and (3) using
a by-hand analysis.

The BLEU metric is a sentence to sentence
comparison metric designed for translations (Pap-
ineni et al., 2002). As it is evaluates word by word,
and is intended to compare very similar sentences
like translations, the original version is not im-
mediately suitable to our task of comparing each
generated sentence to the sentences of the artist’s
corpus. Luckily, with the addition of smoothing
functions described in (Chen and Cherry, 2014),
we can get reasonable results, even in this extreme
case. We use this metric as a means to compare the
quality of our generated text to that of other works
in a subject-agnostic way.

The RhymeAnalyzer System is a metric and
classification system used for identifying pairs of
rhyming syllables in lyrics (Hirjee and Brown,
2009, 2010). It divides sentences not into words or
characters, but into syllables, then considers them
in terms of how often they occur sequentially with
others. We use it for the aggregate statistics it pro-
vides about the identified rhyming syllables. As
these metrics can be considered representative of
an artist’s style, we use them to check whether our
generated lyrics can replicate the style present in
the original baseline lyrics.

Finally, we take the Turing test into our
own hands and act as individual discriminators,
analysing lyrics and attempting to identify which
source they came from. This is the most con-
vincing of the three metrics but, due to time con-
straints, we have limited data for this particular
experiment. We report our accuracy on text gen-
erated with both methods in order to compare the
two. If the generated text is able to fool us, that is,
to often pass as real lyrics, we conclude that they
are well generated lyrics.

3 Results

3.1 Character vs. Word Level Generation

3.1.1 BLEU Score
Our BLEU score results (Fig. 2) show the differ-
ence in BLEU scores between the word and char-
acter level models, as a percentage of the lower
score. We find that, in six of seven cases, the



Figure 2: Smoothed BLEU - ∆% from lower score

BLEU scores for both the word level and charac-
ter level models are within 12% of each other. This
indicates that, at least as translations of the base-
line lyrics, the word and character level models are
performing similarly.

If we consider the BLEU score to be indica-
tive of the overall ”goodness” of the generated
lyrics, then we can note that, for the Big Sean case,
our character level model outperforms the word
level model by 40%. However, because we are
not working with a translation task, this conclu-
sion lacks the support necessary to be considered
meaningful.

3.1.2 RhymeAnalyzer Metrics
For demonstration, we discuss three of the
RhymeAnalyzer metrics. Syllable Variation mea-
sures the variance in the number of syllables
per lyric line. Novel Word Proportion indicates
the percent of words used which were unique.
Rhyme Density measures the average frequency of
rhyming syllables.

Our Syllable Variation data (Fig. 3a) details the
percentage difference in syllable variation for the
generated lyrics, relative to the original baseline
lyrics. In every case, the word level models pro-
duced lyrics with syllable variation at least 72%
higher than the syllable variation of the baseline
lyrics, with a maximum of 157% higher. In con-
trast, the character level models exceeded a differ-
ence of 26% in only one of the seven cases. Even
in the single case where the character level model
had significantly higher Syllable Variation (at 93%
for Inspectah Deck), it is still closer to baseline
than the associated word level model (at 112%).
These results indicate that the character level mod-
els tend to have Syllable Variation much closer to
the baseline than the word level models.

Almost all generated lyrics from both model

types used unique words at roughly half the rate
that the baseline lyrics do (Fig. 3b). This is to be
expected as both models would be unlikely to re-
use a word seen only once in the learning corpus.
However, we find that our character level models
perform very similarly in this metric to the word
level models. This is a surprising result because
it shows that our character level models can per-
form similarly to their word level counterparts for
word level metrics. This hints that representing
the text as words may not provide a significant ad-
vantage for improving the usage of unique words
in generated text, at least in the LSTM model we
used. For our Kanye West character level model,
we observed a significantly higher rate of unique
word usage than the word level model, on par with
the baseline lyrics. We suspect this is an outlier
caused by the model misspelling words, but do not
know why this was observed in only one of the
models.

In terms of Rhyme Density, all of the mod-
els performed admirably, with the character level
models tending to lag somewhat behind both the
baseline and word level lyrics (Fig. 3c). However,
even in the worst case, the character level lyrics
had about over 60% of the Rhyme Density of the
other lyric sets. More typically, they had only ten
to twenty percent less rhyme density. We believe
the word level models were able to rhyme as or
more often than the baseline lyrics due to the com-
paratively fewer unique words used, meaning that
rhyming words may be reused more often. This
effect may be not have been replicated as strongly
by the character level models due to misspelled
words.

3.1.3 Hand Evaluation
Finally, our by-hand lyric evaluation data (Fig. 4)
shows that the lyrics generated by our character
level model tended to be predicted as real less of-
ten than the word level lyrics. However, a gener-
ated lyric is only around 15% less likely to be pre-
dicted as a real lyric if it is a from a character level
model, compared to if it was from a word level
model. Additionally, both sets of lyrics were pre-
dicted to be real more than half the time, meaning
we produced lyrics that were passable more often
than not. It is important to note that this data is
based off hand evaluation of less than 250 lyrics
in total. It is possible that, with significantly more
data, the character level and the word level models
would be shown to produce more similar results.



Figure 3: RhymeAnalyzer Results. a) Syllable Variation - ∆% from baseline. b) Novel Word Proportion per Artist.
c) Rhyme Density per Artist

Figure 4: Vote Percentages for Hand Evaluated Lines

3.2 Adversarial Lyric Generation

Unfortunately, the SeqGAN architecture failed to
converge to an adequate solution as the generator
mode-collapsed. After 50 epochs, the generator
begins to continuously repeat the word “the”. We
suspect this failure is largely due to the very sparse
average reward signals used to guide the genera-
tive model (see Fig. 5b). We attempt to alleviate
this issue by introducing a bootstrapped rescaled
activation function (Guo et al., 2018), to no avail.

4 Conclusion

Our character level models performed well, both
relative to the baseline lyrics and to the word level
models. More often than not, they produced met-
ric results either very similar to those of the word
level models, or only slightly worse. In the case of
the Syllable Variation metric, the character level
lyrics outperformed the word level ones signif-
icantly. These results show that character level
models can be competitive with word level mod-
els, for our task of lyric generation. Unfortunately
they do not show improvement across the board,
but it may be possible for them to, in future work.

The SeqGAN architecture failed to converge,
suffering from mode-collapse. This behavior is
prevalent with adversarially trained models, with

Figure 5: a) Discriminator Loss. b) Average Reward
Signal. c) Generator Loss

practitioners consistently citing the multitude of
instabilities and failures to converge (Caccia et al.,
2018). Nevertheless, several works have proposed
new adversarial frameworks that show promising
results for stabilizing training for the text genera-
tion task (Che et al., 2017; Guo et al., 2018; Fedus
et al., 2018). For future work, we propose imple-
menting these new frameworks for the lyric gener-
ation task.
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